Arithmetic Series

- 1. Compute the sum of each of the following arithmetic series:
 - (a) 21+28+35+...+105
 - (b) The arithmetic series with first term 7, common difference -4 and 14 terms
 - (c) $\frac{1}{2} + \frac{5}{6} + \frac{7}{6} + \frac{19}{2}$
- 2. The sum of a 15-term arithmetic series with first term 7 is -210. What is the common difference?
- 3. The sum of the first 5 terms of an arithmetic series is 70. The sum of the first 10 terms of this series is 210. What is the first term of the series?
- 4. Explain why an arithmetic series with an odd number of terms has its sum equal to the number of terms times the middle term of the series.
- 5. The sum of 5 consecutive even integers is 4 less than the sum of the first 8 consecutive odd positive integers. What is the smallest of the even integers?
- 6. If the sum of the first 3n positive integers is 150 more than the sum of the first n positive integers, then what is the sum of the first 4n positive integers?
- 7. Suppose that the sequence a_1 , a_2 , a_3 , ..., a_{200} is an arithmetic sequence with $a_1 + a_2 + ... + a_{100} = 100$ and $a_{101} + a_{102} + ... + a_{200} = 200$. What is the value of $a_2 a_1$?
- 8. The arithmetic mean can be extended to more than just two numbers. The arithmetic mean of the numbers $a_1, a_2, ..., a_n$ is

$$\frac{a1 + a2 + \dots + an}{2}$$

- (a) Suppose $a_1 \le a_2 \le ... \le a_n$. Why must the arithmetic mean of the numbers a_1 , a_2 , ..., a_n be at least a_1 , but no greater than a_n ?
- (b) Suppose a_1 , a_2 , ..., a_n is arithmetic sequence. Show that the arithmetic mean of all the terms in the sequence is the same as the arithmetic mean of a_1 and a_n .
- 9. Given a sequence $\{a_n\}$, the sum of first n terms is $Sn = \frac{1}{4}n^2 + \frac{2}{3}n + 3$. What is the formulae for a_n ? Is this an arithmetic sequence? If so, what is the initial value and common difference?
- 10. Given an arithmetic sequence $\{a_n\}$, S_n is the sum of first n terms. Prove that S_6 , $S_{12} S_6$, $S_{18} S_{12}$ also make an arithmetic sequence.